axiom set - translation to ρωσικά
DICLIB.COM
AI-based language tools
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:     

Μετάφραση και ανάλυση λέξεων από τεχνητή νοημοσύνη

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

axiom set - translation to ρωσικά

AXIOM GUARANTEEING THE EXISTENCE OF POWER SETS
Axiom of the power set; Power set axiom; Axiom of powerset; Axiom powerset; Axiom power set; Powerset axiom

axiom set      

математика

набор аксиом

axiom of foundation         
AXIOM STATING THAT ALL SETS ARE WELL-FOUNDED
Axiom of foundation; Axiom of Fundierung; Foundation axiom; Regularity axiom; Axiom of Foundation; Axiom of well foundation; Axiom of Regularity; Well founded set; Axiom of fundierung

математика

аксиома фундирования

well founded set         
AXIOM STATING THAT ALL SETS ARE WELL-FOUNDED
Axiom of foundation; Axiom of Fundierung; Foundation axiom; Regularity axiom; Axiom of Foundation; Axiom of well foundation; Axiom of Regularity; Well founded set; Axiom of fundierung
вполне фундированное множество

Ορισμός

кодировка
ж.
То же, что: кодирование.

Βικιπαίδεια

Axiom of power set

In mathematics, the axiom of power set is one of the Zermelo–Fraenkel axioms of axiomatic set theory.

In the formal language of the Zermelo–Fraenkel axioms, the axiom reads:

x y z [ z y w ( w z w x ) ] {\displaystyle \forall x\,\exists y\,\forall z\,[z\in y\iff \forall w\,(w\in z\Rightarrow w\in x)]}

where y is the power set of x, P ( x ) {\displaystyle {\mathcal {P}}(x)} .

In English, this says:

Given any set x, there is a set P ( x ) {\displaystyle {\mathcal {P}}(x)} such that, given any set z, this set z is a member of P ( x ) {\displaystyle {\mathcal {P}}(x)} if and only if every element of z is also an element of x.

More succinctly: for every set x {\displaystyle x} , there is a set P ( x ) {\displaystyle {\mathcal {P}}(x)} consisting precisely of the subsets of x {\displaystyle x} .

Note the subset relation {\displaystyle \subseteq } is not used in the formal definition as subset is not a primitive relation in formal set theory; rather, subset is defined in terms of set membership, {\displaystyle \in } . By the axiom of extensionality, the set P ( x ) {\displaystyle {\mathcal {P}}(x)} is unique.

The axiom of power set appears in most axiomatizations of set theory. It is generally considered uncontroversial, although constructive set theory prefers a weaker version to resolve concerns about predicativity.

Μετάφραση του &#39axiom set&#39 σε Ρωσικά